229. Magnetic Circular Dichroism and Absorption Spectra of 2-Methyl-1, 3-diazaazulene

by Hiroyuki Yamaguchi¹), Masafumi Ata and Koichi Toyoda

Department of Chemistry, Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860, Japan

Hiroaki Mametsuka and Hitoshi Takeshita

Research Institute of Industrial Science, Kyushu University, Fukuoka 812, Japan

and Harold Baumann

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, Universitätstrasse 16, CH-8092 Zürich

(18.VIII.81)

Summary

The magnetic circular dichroism and UV. spectra of 2-methyl-1, 3-diazaazulene (2) have been measured. The UV. spectrum is interpreted by making use of CNDO/S MO CI calculations. Our assignment of the first and second absorption band coincides with one of the corresponding bands of 1, 3-diazaazulene (1) given by *Small & Burke*. The third and fourth absorption bands are in agreement with those published by *Hiratsuka et al.* and *Tanizaki et al.* for 1 and 2-ethoxy-1, 3-diazaazulene, respectively.

Introduction. – The fact that nonbenzenoid hydrocarbons containing an azulene nucleus emit anomalous fluorescence [1-9] led us to investigate the electronic spectra of 1, 3-diazaazulene (1) and its 2-substituted derivatives. There are four absorption bands in the wave-number region of $20.0 \times 10^3 - 47.5 \times 10^3$ cm⁻¹, around 24.5×10^3 , 33.0×10^3 , 40.0×10^3 and 45.0×10^3 cm⁻¹. Only the assignment for the third and fourth bands has been well established [6] [7]. From the dichroic spectra of 1 and its 2-ethoxy derivative in a streched polyvinylalcohol sheet, *Hiratsuka et al.* [6] and *Tanizaki et al.* [7] have shown that the first band consist of a $\pi \to \pi^*$ transition polarized along the y-axis (*Fig. 1*) and a symmetry-forbidden $n \to \pi^*$ transition, and the second band of a $\pi \to \pi^*$ transition. The polarized along the z axis and a symmetry-allowed $n \to \pi^*$ transition. The polarized along the x axis and a symmetry-allowed $n \to \pi^*$ transition polarized along the y axis has been measured in a naphthalene host and only a $\pi \to \pi^*$ transition polarized along the y axis has been mixed crystal spectrum shows in the first band a

¹) To whom correspondence should be addressed.

Figure 1. Numbering of compounds and choice of axis

 $\pi \to \pi^*$ transition with its dipole moment parallel to the y axis, and in the second band two $\pi \to \pi^*$ transitions polarized along the z and y axis [9].

The magnetic circular dichroism (MCD.) is a useful tool for the assignment of complicated electronic spectra and for the investigation of the magnetic properties of the ground and excited states of molecules [10-16]. Expecting that the introduction of a methyl group at the 2 position of 1 would result in a separation of the energies of the $\pi \to \pi^*$ and $n \to \pi^*$ states, we investigated the UV. and MCD. spectra of 2-methyl-1, 3-diazaazulene (2). The main aim of this paper is to determine the assignment of the first and second absorption band of 2 by means of the MCD. spectra of 2 and 2-methylazulene (3) and by comparing the experimental with the theoretical results obtained from the CNDO/S CI method [17] [18].

Experimental Part. - Compound 2 was prepared as reported [19] and was purified by column chromatography on neutral alumina (*Wako Pure Chemical Industries, Ltd.*, W-200) with benzene/ acetone 1:1 (ν/ν). Compound 3, supplied by Dr. Y. Fukazawa, was recrystallized from cyclohexane then sublimed *in vacuo*. Silica gel 60 H (*Merck*) coated plates were used for thin-layer chromatography. Spots were detected by UV. and fluorescence. The cyclohexane was spectral grade. The UV. spectra were recorded on a *Hitachi* 200-20 recording spectrophotometer. MCD. spectra were obtained with a *JASCO* J-40A recording spectropolarimeter equipped with a 1.52 T electromagnet. All measurements were made on deaerated samples at RT.

MO Calculations. – The transition energies and oscillator strengths of **2** were calculated using the CNDO/S CI method [17] [18]. The molecule was computed with regular seven- and five-rings of bond length 0.14 nm. The bond length of the methyl group was set equal to 0.152 nm. All C,H-bonds were taken to be 0.109 nm. The CI treatment considered 48 singly excited configurations with an energy below 96.0×10^3 cm⁻¹ and 45 doubly excited configurations having an energy below 121.7×10^3 cm⁻¹.

In order to discuss the sign of the *Faraday B*-term for the first electronic transition of **2** from the viewpoint of a perturbational treatment [20], we calculated the MO's and MO energies of the unperturbed system of molecule **3** using standard parameters [21] [22] within the PPP approximation [23] [24]. The change ($\delta \varepsilon_i$) of the ith MO energy due to the introduction of the two N-atoms at the I and 3 positions was given by the simple perturbational formula, $\delta \varepsilon_i = 2 c_{11}^2 \delta a_1$. The change (δa_1) of the *Coulomb* integral was estimated by the formula [25], $\delta a_1 = 0.6 \beta_0$, where the value of β_0 was taken as -2.38 eV [22].

Results and Discussion. – The UV. and MCD. spectra of 2 are shown in *Figure 2*. The transition energies and oscillator strengths calculated by the CNDO/S MO CI method are listed in the *Table*. The MCD. spectrum indicates that the first absorption band at about 24.0×10^3 cm⁻¹ consists of an electronic transition. The MO calculations (*Table*) show that the electronic transition has a transition dipole

Figure 2. Magnetic circular dichroism (top) and absorption (bottom) spectra of 2-methyl-1, 3-diazaazulene (2) in cyclohexane

moment parallel to the y-axis of 2. From the negative and positive peaks of the MCD. spectrum at 32.0×10^3 and 35.8×10^3 cm⁻¹ respectively, one expects that the second absorption band contains at least two electronic transitions. In the *Table* are listed two allowed $\pi \to \pi^*$ transitions and a forbidden $n_- \to \pi^*$ transition in the region of the second absorption band. The forbidden $n_- \to \pi^*$ transition may probably be too weak to be observed. The CNDO/S calculations indicate that the third absorption band consists of four electronic transitions, *i.e.*, an $n_- \to \pi^*$, a $\pi \to \pi^*$ parallel to the z-axis, a forbidden $n_- \to \pi^*$ and an allowed $n_+ \to \pi^*$ transition. These $n \to \pi^*$ transitions obtained by calculation might be hidden under the strong absorption band at 40.0×10^3 cm⁻¹. The *Table* strongly supports the conclusion that the fourth absorption band (45.0×10^3 cm⁻¹) consists of the $n_+ \to \pi^*$ transitions, and the fifth band (above 48.0×10^3 cm⁻¹) of a $\pi \to \pi^*$ transition polarized parallel to the z-axis.

Our assignment for the first absorption band is not in agreement with that given by *Hiratsuka et al.* [6] for 1 and by *Tanizaki et al.* [7] for the 2-ethoxy derivative of 1 but it fits the interpretation given by *Burke et al.* [8] and *Small & Burke* [9] for 1. The attribution of the second absorption band agrees with [9]. Our assignment for the third and fourth absorption band is consistent essentially with [6] and [7].

The MCD. spectrum of 3 is shown in *Figure 3*, together with the absorption spectrum. As a whole, the MCD. spectrum of 3 resembles that of azulene except

	0 1 /		(<i>'</i>
Theory			Experiment
$\frac{\Delta E}{(\times 10^3 \mathrm{cm}^{-1})}$	Sym.	f	$\frac{\Delta E}{(\times 10^3 \mathrm{cm}^{-1})}$
25.7	${}^{1}A^{\prime\prime}(\pi \rightarrow \pi^{*})$	0.0002	24.5 ($\log \varepsilon = 2.73$)
33.2	$^{1}\mathrm{A}^{\prime}(\pi\rightarrow\pi^{*})$	0.0146]	
34.5	$^{1}A''(\pi \rightarrow \pi^{*})$	0.0990 }	$33.0 (\log \varepsilon = 3.93)$
35.1	$^{1}\mathrm{A}^{\prime\prime}(n_{-}\rightarrow\pi^{*})$	0.0001	
36.6	$^{1}\mathrm{A'}(n_{-} \rightarrow \pi^{*})$	0.0002	
38.3	$^{1}\mathrm{A}^{\prime}(\pi \rightarrow \pi^{*})$	0.5678	$40.0 \ (\log \varepsilon = 4.61)$
39.9	$^{1}\mathrm{A}''(n_{-} \rightarrow \pi^{*})$	0.0000 }	
41.7	$^{1}\mathrm{A'}(n_{+} \rightarrow \pi^{*})$	0.0001	
47.4	$^{1}\mathrm{A}'(n_{+}\rightarrow\pi^{*})$	0.0000]	45.0 ($\log \varepsilon = 4.38$)
47.6	${}^{1}\mathrm{A}''(\pi \rightarrow \pi^{*})$	0.0369 }	
48.5	$^{1}\mathrm{A'}(\pi \rightarrow \pi^{*})$	0.1786J	

Figure 3. Magnetic circular dichroism (top) and absorption (bottom) spectra of 2-methylazulene (3) in cyclohexane

for the sign of the second band which is opposite to that of the same band of azulene [26-28]. The PPP SCF MO CI calculations for 3 indicate that the lowest singlet excited (S_1) state can be represented by $|1 \rightarrow -1\rangle$ and the second excited (S_2) state by the linear combination $a|1 \rightarrow -2\rangle - b|2 \rightarrow -1\rangle$. Bonding molecular orbitals are numbered in the order of decreasing, antibonding orbitals by negative

integers in the order of increasing energy. The contribution of the *B*-term of the $S_0 \rightarrow S_1$ transition which arises from the magnetic mixing of S_1 and S_2 states is then equal to $B(S_1 \text{ from } S_2) = (a^2 - b^2) \operatorname{Im}\{\langle 2 | \hat{\mu} | 1 \rangle \cdot \langle 1 | \hat{m} | -1 \rangle \times \langle 1 | \hat{m} | -2 \rangle / \Delta E\}$ where ΔE is the energy difference between the S_2 and S_1 states, $\hat{\mu}$ the magnetic and \hat{m} the electric dipole moment operator [20]. The perturbation due to the introduction of two N-atoms instead of C(1) and C(3) of 3 makes the energy of $|1 \rightarrow -2\rangle$ higher than that of $|2 \rightarrow -1\rangle$, so $a^2 < b^2$. The sign of the *Faraday B*-term of 2 will be negative in the first electronic transition. In fact as shown in *Figure 2*, the MCD. spectrum of 2 has a positive curve (the sign of the *Faraday B*-term is opposite to the sign of the MCD. spectra) in the first absorption band.

We thank Dr. Y. Fukazawa of Tohoku University for the supply of 2-methylazulene and Prof. J.F. M. Oth for kindly supporting this work.

REFERENCES

- [1] M. Beer & H. C. Longuet-Higgins, J. Chem. Phys. 23, 1390 (1955).
- [2] D.F. Eaton, T.R. Evans & P.A. Leermarkers, Mol. Photochem. 1, 347 (1969).
- [3] R. C. Dhingra & J. A. Pople, J. Chem. Phys. 48, 4829 (1968).
- [4] H. Yamaguchi, K. Ninomiya, M. Fukuda, S. Ito, N. Kato & Y. Fukazawa, Chem. Phys. Lett. 72, 297 (1980).
- [5] H. Yamaguchi, K. Ninomiya, M. Fukuda & T. Muraoka, Spectrochim. Acta A 36, 1003 (1980).
- [6] H. Hiratsuka, Y. Tanizaki & T. Hoshi, Spectrochim. Acta A 28, 2375 (1972).
- [7] Y. Tanizaki, H. Hiratsuka & T. Hoshi, Spectrochim. Acta A28, 2367 (1972).
- [8] F. P. Burke, G.J. Small, J. R. Braun & T.-S. Lin, Chem. Phys. Lett. 19, 574 (1973).
- [9] G.J. Small & F.P. Burke, J. Chem. Phys. 66, 1769 (1977) and ref. therein.
- [10] A. D. Buckingham & P.J. Stephens, Ann. Rev. Phys. Chem. 17, 399 (1966).
- [11] P.N. Schatz & A.J. McCaffery, Quart. Rev. Chem. Soc. 23, 552 (1969).
- [12] D. Caldwell, J. M. Thorne & H. Eyring, Ann. Rev. Phys. Chem. 22, 259 (1971).
- [13] A. Kaito, A. Tajiri & M. Hatano, J. Am. Chem. Soc. 97, 5059 (1975); 98, 384 (1976).
- [14] J. Michl, J. Am. Chem. Soc. 100, 6801 (1978) and following papers.
- [15] M. Higashi & H. Yamaguchi, J. Chem. Phys. 70, 2198 (1979).
- [16] H. Yamaguchi & M. Higashi, Chem. Phys. Lett. 68, 77 (1979).
- [17] J. del Bene & H. H. Jaffé, J. Chem. Phys. 48, 1807 (1968) and following papers.
- [18] H. Baumann, QCPE 11, 333 (1977).
- [19] H. Takeshita, A. Mori, T. Minami & H. Kondo, Heterocycles 14, 793 (1980).
- [20] J. Michl, Int. J. Quantum Chem. Symp. 10, 107 (1976).
- [21] P. Lindner & O. Martensson, Theor. Chim. Acta 7, 352 (1967).
- [22] H. Yamaguchi, T. Nakajima & T. L. Kunii, Theor. Chim. Acta 12, 349 (1968).
- [23] R. Pariser & R. G. Parr, J. Chem. Phys. 21, 466 (1953).
- [24] J.A. Pople, Trans. Faraday Soc. 49, 1375 (1953).
- [25] H.C. Longuet-Higgins & C.A. Coulson, Trans. Faraday Soc. 43, 87 (1947).
- [26] E. W. Thulstrup, P. L. Case & J. Michl, Chem. Phys. 6, 410 (1974).
- [27] H.P.J.M. Dekkers & S.W.T. Westra, Mol. Phys. 30, 1795 (1975).
- [28] A. Tajiri & M. Hatano, Chem. Phys. Lett. 34, 29 (1975).

2360